Developer’s Guide for CBUS (Version 6b)

Contents:
1. Purpose
2. Introduction
2.1 Nomenclature
3. The CBUS message structure (summary)
3.1 Module configuration
3.1.1 Layout control
3.1.2 Locomotive control
3.1.3 Bus control
4. Message format
4.1 The OpCode — introduction
4.2 Layout control messages
4.2.1 The producer / consumer model
4.2.2 The ‘device addressed’ scheme
4.2.3 Long and short events
5. Hardware operating modes. SLiM and FLiM.
5.1 Characteristics of SLiM
5.2 Characteristics of FLiM
6. Requirements for use with CAN.
6.1 The Standard CAN frame
6.2 The CAN_ID
6.3 The self-enumeration scheme
6.4 The CAN header format
7. Configuring the modules
7.1 SLiM configuration
7.2 FLiM configuration
7.2.1 Putting into FLIM mode
7.2.2 Allocating a node number
7.2.3 Switching back from FLiM to SLIiM .
7.2.4 Changing NN and/or forcing CAN ID self enumeration.
7.2.5 Teaching Node Variables
7.2.6 Readback of Node Variables
7.2.7 Teaching events and Event Variables
7.2.8 Readback of events and Event Variables
8. Layout control and associated commands
8.1 Events with added data
8.2 Polling of producers
8.3 Data only events
9. The DCC system (locomotive control)

9.1 CABs

9.1.1 Operating sequence
9.1.2 Allocation of a ‘session’
9.1.3 Setting speed step range
9.1.4 The ‘keepalive’
9.1.5 Speed and direction
Page 1 Developer’'s Guide Rev 6b



9.1.6 Function control

9.1.7 Emergency stop

9.2 Consisting

9.3 CV programming

9.3.1 Service mode

9.4 Direct DCC packets

9.5 Layout control from CABs

10. The computer interface protocol.
10.1 The header
10.2 The frame type
10.3 The data segment

11. The bootloader

12. The reference section
12.1 The CBUS specification.
12.2 Error Codes

1. Purpose:

This Guide is intended for those with technical knowledge wishing to develop additional hardware,
software and firmware for use with CBUS. It also provides all the technical background and information
to enable a better understanding of how CBUS works, along with the rationale for our choices and
methods.

It is not a ‘User Guide'.

2. Introduction.
Introduction to CBUS

CBUS is a general purpose layout control system (layout control bus or LCB) for model railways (MR) of
any gauge or scale. It also covers control of locomotives and integrated schemes for full layout
automation including computer interfacing.

The philosophy of CBUS was simplicity, both of use and implementation, and flexibility. Its main
characteristic is the separation of the messages from the transport. It is inherently ‘transport
independent’. However, to allow the interchange of different manufacturer’s hardware, a common
transport (or hardware level) was needed. Having considered many options we decided on the industry
standard CAN bus. Not only has this been in use for MR LCBs for many years by Zimo and so is proven
in its suitability for the MR environment, it has a massive hardware and software base in the industrial
and automotive area so CAN hardware is readily available from multiple vendor sources and no design
effort is needed to implement it for a MR LCB.

There are many references to CAN and no further description is needed here except to point out that it is

a multiple access, bi-directional bus which uses its (unique) non-destructive bitwise arbitration scheme
which always ensures the immediate transmission of the highest priority message.

Page 2 Developer’'s Guide Rev 6b



The CAN protocol sets the data length per message at 8 bytes. This is a compromise between bytes per
message and access time to the bus for other ‘nodes’. CAN is designed for systems requiring short
messages but with guaranteed ‘latency’ or access time as it is used in safety critical situations. The
ability to prioritise the access also is a great advantage.

Overall, we considered that CAN represented the best available solution for a MR LCB without inventing
yet another bus with no hardware support or user base.

1. It is a tried and tested system with readily available hardware at low cost.

2. Minimal effort is required to incorporate it into MR products.

3. It is an open standard with no IP restrictions.

4. The data rates and transmission distances are suitable for a MR LCB. (125 Kbits/sec)

The arbitration scheme of CAN requires that each node has a unique ‘header’ section, in the CBUS case
of 11 bits. We have developed a mechanism whereby a node can self-allocate its own unique ID without
needing user intervention or the inclusion of a manufacturer programmed unique number.

The scheme allows for peer-to-peer, master-slave or any combination of transaction.

Note 1: Although CAN is the currently implemented transport channel, the protocol allows for any other
transport scheme that may be desired including various wireless systems and Ethernet.

Note 2:The CBUS protocol is transport independent. The parts of this document that relate to the
transmission of CBUS over CAN do form part of the CBUS specification but are only applicable when
CAN is being used for the transport. The specification will be developed to include any alternative
requirements for CBUS over other transport layers as and when they are implemented.

Note 3: CBUS was simply a name that originated within the development team. It is not trademarked.
Any commercial development may need to use a different name.

Note 4: All CBUS documentation has avoided using abbreviations or acronyms which are used by the
NMRA DCC Standards or RPs. We have deliberately avoided the use of ‘CVs’ to prevent any confusion.
Also we do not refer to ‘packets’ or ‘decoders’ as this is again DCC parlance.

2.1 Nomenclature:
For the purposes of this document. the following nomenclature will be used.

Module: A hardware implementation containing the processing and input / output
components for attachment to layout devices.

Node: A discrete attachment to the bus using a suitable transceiver. Normally, each
module would have one node but multiple nodes per module are possible.

Device: A physical layout device such as a turnout mechanism, light, relay or switch
etc. Can also be a ‘virtual’ device on a PC.

Message: A self contained set of bytes conveying information to or from a node.
CBUS messages are usually limited to 8 bytes but may be extended to
multiples of 8 bytes.

Frame: A complete set of data as used in a CAN transmission (or other transport).
For CAN, a frame includes the CAN header bits and the CBUS message.

Event: A generic term derived from the ‘Producer / Consumer’ model for a message
conveying layout control or state information. An event is sent in response to a
change in state of a layout device and will result in an action on the layout of
other devices.

Page 3 Developer’'s Guide Rev 6b



3. The CBUS message structure (summary)

Each message has between one and eight bytes. The first byte is the ‘command’ byte which also
includes information on the number of bytes in the message. This command byte is also referred to as
the OpCode or OPC. All messages have one command byte or OpCode.

The remaining part of the message will depend on the purpose of the message. There are several
categories of message.

3.1 Module configuration.

CBUS is highly flexible and allows for many different types of module, each with different configuration
requirements. A set of OpCodes and associated messages has been defined for this module
configuration. Included here is the ability to read back information relating to module status and
configuration.

3.1.1. Layout control.

Layout control has a smaller set of OpCodes defining ‘events’. These are ON events, OFF events and
‘request / response’ events. The nature of these events will depend on the ‘model’ being used, the ‘long’
event or the ‘short’ event. This will be described in section 4.2. A normal event is one OpCode and 4
additional bytes but there is the capability of adding up to three extra data bytes where further
information needs to be conveyed, such as ‘analogue’ values.

3.1.2 Locomotive control.

There is a specified set of OpCodes and messages for locomotive control. Although intended for use
with the NMRA DCC standards, the structure would also apply to analogue (DC) controllers if required.
Included in this category are commands for track power control.

3.1.3. Bus control.

A small set of OpCodes / messages for control of the bus.

4. The message format.

The CBUS message format was only arrived at after a number of years of discussion and debate,
including the testing of several alternative schemes. Crucial to the requirements were the transport
independence, the messages had to be self-contained, and were not to rely on any specific hardware
capabilities such as the filtering’ available in CAN. Having tried CAN filtering, we realised that the
number of required options far exceeded the capability of the CAN filter or mask mechanism. Hence the
ability to distinguish and ‘parse’ messages was best handled entirely in the module firmware. As CAN
filtering only takes place (with some options in some processors) in the CAN header section, we opted to
avoid any protocol that has any message information in any transport header. Other transports may not
have the ability to process header information anyway. A consequence of this, when using CAN, was to
allow the use of the ‘standard’ CAN frame with its 11 bit header. (See section 6 for CAN header
requirements).

Page 4 Developer’'s Guide Rev 6b



4.1 The OpCode.

All CBUS messages start with a single byte OpCode. For subsequent parsing, we chose to include in
this OpCode, information regarding the number of bytes in a message. The top three bits of the OpCode
byte give the number of message bytes, i.e. 000 indicates no message bytes, just the OpCode, and 111
indicates 7 added bytes which is the maximum. The remaining 5 bits of the OpCode define its purpose.
Hence there can be 32 messages per message length. However, each block of 32 has an OpCode
allowing an extention OpCode byte adding 256 more OPCs per length. This has not proven necessary
so far and these extension OPCs have not been defined. The presently defined OpCodes are given in
the Specifications section (Section 12) of this document.

There is no ‘error’ byte in a CBUS message. The integrity of the message must be ensured by the
transport. With CAN, error detection is inherent in its working.

4.2 Layout control.
The layout control scheme will be described first as it requires some explanation, including its history.

CBUS uses two alternative methods, or ‘models’ for layout control, both of which are fundamentally
different in concept. These are the ‘Producer / Consumer’ (P/C) model and the ‘Device Addressed’
model. CBUS initially used just the P / C model but experience on real layouts led us to the alternative
Device Addressed scheme.

4.2.1 The Producer / Consumer (P / C) model.

In P / C terminology, a ‘producer’ creates an ‘event’ that is sent onto the bus. Strictly, this is just a unique
number. Any ‘consumer’ needing to act on this event is ‘taught’ it so it recognises that event in future.

Different consumers can act on the same event but in different ways if wanted. This is a flexible
arrangement where it is easy to add consumers. With true P / C, there would be a separate event for an
ON action and an OFF action — two different numbers. CBUS uses the same 4 byte number so that it
can be associated with a producer device, like a switch on a control panel, and uses the OpCode to
indicate ON or OFF.

The requirement of P / C is that the event should be numerically unique even if the number is arbitrary.
To ensure this in CBUS, the producer nodes have a 16 bit Node Number (NN) which forms the first 2
bytes of the unique event number. As long as this NN is unique, it ensures that the whole 4 byte number
is unigue on the layout, and meets the requirement for the event.

As each producer node may have many input actions, the third and fourth bytes make up a second 16 bit
number for actions within a node. These could be the same for all similar nodes and ‘built in’ to the
hardware. Hence a CBUS P / C event is a 32 bit (4 byte) number, preceded by an OpCode. The format,
in bytes, is

<OPC><NNhi><NNIlo><ENhi><ENIlo>

Where EN is the value associated with specific input actions. For example, the OPC is 0x90 for an ON

event and 0x91 for an OFF event. It is a 4 byte message so the OPC has ‘100’ as the top three bits. The
remaining bits are 10000 or 10001. The only other event type used is a ‘request’ which is used to elicit a
‘response’ from another producer giving the state of (say) a producer input without performing a defined
action. Here the ‘request OPC is 0x92 and the ‘response’ is 0x93 if the input is ON and 0x94 if it is OFF.

If there is only one producer of a specific event, that producer can be identified by its NN. This is useful
for diagnostics as well as ensuring event uniqueness. A ‘one to many’ scenario. It is possible to have
many producers sending the same event but you then lose the source NN identification. This represents
a ‘many to many’ scenario. The CBUS P/C model focuses on the ‘one to many’ approach.

Page 5 Developer’'s Guide Rev 6b



4.2.2 The ‘Device Addressed’ model

With the P/C model, there is no easily specified relationship between the numerical value of an event
and either its source or destination. This is particularly the case with multiple consumers acting on the
same event. You cannot always tell what will happen when a given event is sent.

This is a great feature of the P/C model, giving great flexibility as to how it is set up. However, it can also
be a problem in certain situations.

Some computer programs struggle with this pure P/C approach, whilst others cope without difficulty.

Some computer programs need to be able to send commands to specific, known layout ‘devices’ and
receive state changes from known layout devices. This is, in effect, an ‘addressed’ scheme where each
layout device has a known address or, as we have termed it, a 'device number’ or DN.

Thus a switch on a control panel can have its device number and a turnout a different (or even the same)
device number. CBUS has the capability to use either the P / C or the device addressed scheme,
including both at the same time. We have kept the same message format for both but used different
OpCodes to distinguish. The format for an ‘addressed’ event is

<OPC><NNhi><NNIlo><DNhi><DNlo>

The node number of the sending node is still included for traceability and diagnostics but is ignored by
the receiving nodes or any attached PC software. In this case it is the DN that is unique to the layout
device which either produces or consumes the event. Clearly this limits the number of definable devices
on a layout to al6 bit range (0 to 65535.)

Once again, there are ON, OFF and request / response OPCs.

4.2.3 Long and short events.

Although it may seem a bit misleading, the P / C events with all 4 bytes making up the unique event
number have been termed ‘long’ events and the addressed events where only the lower two bytes are
the significant device number, have been termed ‘short’ events, even though they are actually the same
length in byte terms.

The long events are best suited to ‘hardware only’ layout control and for use with computer programs

that support the P/C model. The short events are best used with PC software that does not support the
P/C model.

Page 6 Developer’'s Guide Rev 6b



5. SLiM and FLiM — the two hardware operating modes.
SLiIM The Simple Layout implementation Model

FLIM The Full Layout implementation Model

One of the starting criteria for CBUS was the ability to set up and use the system without any need for a
PC or any similar configuration device using the CBUS itself. Configuration was to be entirely manual
using switches on the modules. This use of CBUS modules is called SLiM..

5.1 Characteristics of SLiM.

SLiM uses the ‘long’ event scheme. (P /C)

Producers have their Node numbers set by switches. This NN range varies with the physical
implementation of the module itself but has a maximum range of 1 to 99.

It is up to the user to ensure that NNs are unique.

The set NN is also the CAN_ID. (See section 6 for CAN header requirements)

Consumers do not have a NN. There is no protocol limit to the number of consumers.

Consumers are taught the event and how to respond to it by use of a ‘learn’ switch and then sending the
event from the producer.

Learned events can be unlearned and all events cleared.

Full route setting and state polling is possible in SLiM.

It is possible to use a PC for layout control with SLIM. The computer must be able to ‘learn’ the producer
events (act as a consumer) and then, after processing these events, act as a producer to send the
commands to the layout modules.

5.2 Characteristics of FLiM

The FLiM scheme relies on the use of a PC or similar configuration tool for setting up and teaching the
modules. It has more comprehensive capabilities than SLiM.

It can operate in either the P / C (long event) mode, the ‘addressed’ or short event mode or any
combination of both.

Although initial configuration requires a PC tool, subsequent operation doesn’t need a PC to be involved.
(CBUS has no ‘node manager’ requirement)

There is a comprehensive set of OpCodes and instruction messages for configuring FLiM modules
including the ability to read back all settings to a file for subsequent reinstatement if required. This will be
covered in section 7.

As all nodes need to accessed by the configuration tool, both producers and consumers must have node
numbers. These are a 16 bit range (1 to 65535) and would normally be allocated by the configuration
software. Nodes (modules) can be given names linked to their NNs.

NN of 00 00 is a special case reserved for SLIiIM consumer nodes and configuration software.

6. Requirements for use with CAN.

Although CBUS is transport independent in its protocol, the present implementation uses CAN. This
section describes the requirements for the CAN header, including the allocation of unique CAN_ID
values and message priority.

6.1 The Standard CAN frame.

CBUS uses the standard CAN frame for all its LCB functions. (The exception is the bootloader which is
described in section 11). The standard CAN header is 11 bits long. CBUS uses the top 4 bits for priority

Page 7 Developer’'s Guide Rev 6b



and the remaining 7 bits for the CAN_ID number. This decision was made simply because readily
available CAN transceiver ICs only support up to 110 nodes on a CAN ‘segment’. Hence we opted for a
7 bit range for the CAN_IDs. CAN uses a bitwise arbitration scheme whereby the header with the lowest
value has priority if multiple nodes attempt bus access at the same time. Now the message with the
lowest number (highest priority) will always gain immediate access to the bus and the remaining
messages will automatically retry and be sent in priority sequence. This priority scheme is utilised by
CBUS as follows.

Assuming the header bits are 0 (LShit) to 10 (MShbit):

Bits 10 and 9 are called the Major Priority (MjPri.) There are three possible values
00 is the highest

01 is next

10 is lowest.

The CAN protocol prohibits a sequence of 7 or more 1 bits at the start of the header, so a

MijPri. of 11 is not used. The MERG CBUS modules have a dynamic priority scheme where messages
start with the lowest value (10) and will increase the priority to maximum if a message is not sent within a
given time or a preset number of ‘retries’. However, this particular ‘latency’ scheme is only a specific
implementation. It does ensure no message waits too long. However, when using CAN, implementors
should adhere to the priority values as indicated in the Specification section, at least for starting priority,
to avoid possible ‘bus hogging'.

Bits 8 and 7 are the Minor Priority (MinPri.) bits and are allocated to messages based on their urgency
requirements. This is somewhat arbitrary but loco control (speed and direction messages or emergency
stop for example) have a higher priority than layout control like turnout changing. These values should
be adhered to for compatibility.

6.2 The CAN_ID

The remaining 7 bits of the header comprise the CAN_ID number. To avoid bus conflicts, each node
requires a unique CAN_ID. With modules in SLiM mode, the CAN_ID value is set by the on-board
switches. A NN of 00 00 is reserved so the firmware of a SLiM node should ensure that the CAN_ID is in
the range of 1 to 99. CAN_ID values in the range 100 to 127 have been reserved (so far) for modules
with fixed CAN_IDs such as the PC interfaces and DCC command station which have no DIL switches.

6.3 The self enumeration scheme.

MERG CBUS modules in FLiM mode and the DCC CABs implement a self enumeration scheme
whereby any new module can allocate itself a unique CAN_ID. The mechanism is as follows. (An
understanding of CAN is assumed here).

A node which is put from SLiM to FLiM for the first time, or a CAB when a loco is requested will issue a
Remote Transfer Request (RTR) CAN frame. This prompts all other nodes currently active on the bus to
send their CAN_ID values. This value is in their CAN header so there is no data byte with this frame.

The new node monitors all the incoming zero data frames and notes their CAN_ID values. After a delay
(presently set to 100mSec), the new node chooses the lowest unused value. If a fixed node, it keeps this
value. If a CAB it releases it if unplugged and will re-enumerate when next plugged in.

Note 1. The sequence in which the CAN_ID responses from other nodes arrive is not important.

Note 2. The scheme only works for existing nodes that already have a NN and are powered up. If no

nodes have a NN, the first one to make a request will give itself the lowest value so only one node
should perform the self enumeration at one time.

Page 8 Developer’'s Guide Rev 6b



This means that self enumeration should not be performed by nodes at power up, as all nodes would be
trying to self-enumerate at the same time. The CAN_ID, once set by self enumeration, should be stored
and kept static until changed. If a node is moved from one layout to another, or a module introduced
back into a layout where other modules have since been added, it is possible that a CAN_ID conflict
could occur. Developers should therefore provide a mechanism whereby self enumeration can be
invoked again. The existing CBUS modules do this when first set into FLiM mode from the default SLiM
mode. When transferring a module from one layout to another, it should first be released from the
existing layout by setting back to SLiM. When powered up on the new layout, setting to FLIM will
introduce the new module to that layout and perform the required self-enumeration. See section 7 for
module configuration. However, two new OpCopdes have recently been introduced. ENUM (0x5D)
allows a software tool to force a self-enumeration sequence for any node at any time and OpCode
CANID (0x75) allows a software tool to set a user specified CAN_ID.

The use of CAN as transport for CBUS is not mandatory but for interchangeability of existing CAN based
hardware, the scheme should be adhered to where CAN is used.

6.4 The CAN header format:

For subsequent documentation purposes, including the main Specification document, the following
nomenclature for the CAN header will be used.

[<MjPri><MinPri><ID>]

When implementing the header in microcontrollers like the PIC 18Fxx8x series, the standard header is in
two bytes. — SIDH and SIDL. The 11 actual bits are ‘left justified’ and the remaining 5 bits of SIDL must
be set to zero. As extended frames are not used, the EIDH and EIDL bytes should also be set to zero.
As an example, if the CAN_ID is 99, the MjPri = 10 and the MinPri = 11 then the two header bytes SIDH
and SIDL are

1011 1100 0110 0000 or 0xBC, 0x60

Also, if using the MERG CAN_USB or CAN_RS PC interfaces, the CAN header (two bytes) must be
provided by the software.

7. Configuring the modules.

The following section covers the basic principles of module configuration. This can be a relatively
complex process and some specifics will be dependent on the properties of the actual module being
configured. Each of the present MERG CBUS modules will be covered separately in the ‘MERG CBUS
Modules’ document.

Although this document is primarily orientated towards the FLiM scheme, the SLiM configuration will be
briefly covered here. It applies only to the MERG modules. Other designs may employ a different system
for manual configuration provided it is suitably documented.

Note that CAN_RS and CAN_USB modules are neither SLiM nor FLiM, the green LED only indicates
that the module is operational.

7.1 SLiM configuration.

SLiM mode is indicated by the green LED (only) being illuminated. It is the default state for all new
modules.

Page 9 Developer’'s Guide Rev 6b



Each module has a DIL switch and on some modules, additional jumpers. For producer only modules, it
is only necessary to set their switches or jumpers so each producer module has a different value (bit
combination). The value will be that set for the NN with one added. Hence a bit switch value of 000 will
be translated into a NN of 1 and a bit switch value of 111 into a NN of 8. This is to avoid a NN value of
0. When an input on a producer module changes, a long event (ON or OFF) will be sent. The lower two
bytes (the EN number) are fixed by the hardware. (The CANACES3 is an exception here as it can be
taught what event to send for a given switch change but this is an unusual situation if, say, you require
two or more control panels to send the same long event.) Consumer modules require teaching the
events to respond to. They have a DIL switch (6 way) and, in some modules, additional jumpers. Typical
of an 8 output module such as the CANACCS8 would be as shown below.

The three ‘Sel’ switches select which output the ‘event’ will apply to. There are 8 outputs numbered 1 to
8. The three switches allow a selection of one of the 8 outputs using a binary sequence. When the switch
is ‘down’ (ON as written on the switch) this represents a logic 0. A switch in the up (OFF) position is a
logic 1. With all three switches down, this gives a value of binary 000 and selects output 1

To train the CANACCS8 module, you need a CBUS ‘producer’ module which creates events.

Select the output to which the event will apply. Put the ‘learn’ switch down. Send the event. Put the learn
switch up. The event is now remembered. You can add more outputs to an event by repeating the
above sequence with different settings of the Sel switches. Thus, an 8 output module can create any
binary number output with a single event. This is useful for signal aspects or driving a 7 segment display.
The MERG modules also have a polarity (Pol) switch which, if set during learning, reverses the action of
the output relative to the command (ON or OFF). With the present modules, you can add outputs to an
event and change the polarity of an existing output but you cannot remove an output once set.

You can remove the complete event by setting both learn and unlearn switches down and then sending
the event. (Put them back afterwards).

To completely clear all events from a SLiM consumer, power it down, put the unlearn switch down and
apply power. Return the unlearn switch to its OFF (up) position.

Most existing MERG modules will store 32 or 128 events depending on
the firmware revision. (the CANLED will store 255 events) If the limit is
reached the yellow LED will flash.

Unlearn
Learn
Pol.

Sel 2
Sel 1
Sel 0

For developers designing new hardware, any suitable teaching method
can be employed. The only requirements are the ability to set a NN for
producers in the range 1 to 99 and for consumers to learn ‘long’ events,
including what to do with them. The MERG scheme is only illustrative.

DIL switch Top view

7.2 FLiM configuration.

This is the major part of this Developer's Guide. CBUS is a very flexible protocol and allows modules to
work in many different ways with a significant number of OpCodes and corresponding messages being
devoted to module configuration. Frequent reference will be made to these OpCodes and messages
which are more formally described in the accompanying Specification section (12.1) to which reference
should be made when required. Also each of the existing modules will have different configuration
requirements and again, these are spelt out in the associated detailed setting up for specific modules.

The following section is a generic description of the FLiM setup mechanism along with the various
facilities for checking / verification and configuration retrieval. It assumes that the module(s) will be

Page 10 Developer’'s Guide Rev 6b



connected to a PC or similar tool via a PC interface such as the MERG CAN_USB or CAN_RS modules
and be powered up.

7.2.1 Putting into FLiM mode.

All existing modules have a default mode of SLiM. When first powered up, the green LED will be on. To
put a module into FLiM, hold the small pushbutton on the module in until the green LED extinguishes.
This is about 8 seconds — to avoid accidental presses. Release the pushbutton and the yellow LED will
flash. The module is now in ‘setup’ mode and will automatically perform the ‘self enumeration’ process
as well as prompting for a node number. The enumeration will occur even if it already had a CAN_ID
previously. It will probably allocate a different CAN_ID as a result. Note: this arrangement is that used by
the MERG modules. Other implementations that achieve the same objective are possible.

7.2.2 Allocating a node number.

The NN prompt is RQNN (request node number). In a ‘virgin’ node the accompanying NN will be 00 00
but if the node already has a NN, this will be included instead. The message is

<0x50><NNhi><NNIlo>

A software tool should respond to this message. You can read the node parameters at this stage as a
block and then allocate a node number or simply allocate a node number.

Note: Certain node numbers are presently allocated to specific devices and should not be taught to any
modules. These are:

OxFFFF Used by all CABs

OxFFFE Used by command station
0x007F Used by CAN_USB modules
0x007E Used by CAN_RS modules

0x0064 to 0x007D Reserved for modules with fixed NNs.

7.2.2.1 Reading Node parameters. (optional)

It is useful for the software tool to know what the new module is so it can allocate the appropriate node
number and identify any files or information needed for the remaining configuration process. Modules
should contain a ‘parameter set’ of 8 bytes giving this information as listed below. The first 7 parameters
can be read in setup mode using RQNP. This is a single OPC message as the node does not, at this
stage have a node number. It is important that there is only one node on the system in ‘setup’ mode at
any one time. While the yellow LED is flashing, send

<0x10> (RQNP)
The module will respond with PARAMS. This is the OPC followed by the 7 bytes of the parameter set.
<OXEF><PARA 1><PARA 2><PARA 3> <PARA 4><PARA 5><PARA 6><PARA 7>

The parameters are defined as:

Para 1 The manufacturer ID as a HEX numeric (If the manufacturer has a NMRA
number this can be used)
Para 2 Minor code version as an alphabetic character (ASCII)

Page 11 Developer’'s Guide Rev 6b



Para 3 Manufacturer’'s module identifier as a HEX numeric

Para 4 Number of supported events as a HEX numeric

Para 5 Number of Event Variables per event as a HEX numeric

Para 6 Number of supported Node Variables as a HEX numeric

Para 7 Major version as a HEX numeric. (can be 0 if no major version allocated)
Para 8 Node Flags

The Node Flags byte contains bit flags defined as:
Bit 0: Consumer

Bit 1: Producer

Bit 2: FLiM Mode

Bit 3: The module supports bootloading

If a module is both a producer and a consumer then it is referred to as a “combi” node and both bits 0
and 1 will be set.

Note that although parameters above 7 cannot be read using RQNP whilst in setup mode, any

parameter may be read once a node number has been assigned using RQNPN. See section 12.2 for a
full definition of all the parameters.

CBUS also allows for a module to have a manufacturer defined ‘name’ which can be read at this stage if
one has been allocated.

This is requested by RQMN.

<0x11>

The response is NAME

<0xE2><><charl><char2><char3><char4><char5><char6><char7>

Obviously the NAME string is limited to 7 chars, all 7 characters are used, the name string must be
space filled. If the module uses CAN as its transmission method, the NAME will have ‘CAN’ added as
the first part of a name so the actual module name could be 10 characters including the assumed CAN

The actual name prefix is must be added by a configuration software tool and depends on the Interface
Protocol parameter defined in section 12.2.

Reading the parameter set and a name (if any) is a useful but optional process. However, to exit the
‘setup’ mode, the node must be allocated a node number using SNN (set node number)
<0x42><NNhi><NNlo>

It is up to the software tool or user to allocate a node number which should be unique to that node. Only
where duplicate nodes such as for ‘replacements’ should a NN be repeated. The software can attach a
user defined descriptor to the NN so any subsequent reference can be to a recognisable name.

The module will reply with NNACK (node number acknowledge) as

<0x52><NNhi><NNIlo>

The module will now be in FLIM mode and the yellow LED will go steady. It will retain its FLiM status and
NN (including its CAN_ID) during any power down.

Page 12 Developer’'s Guide Rev 6b



The module is now ready for teaching. If no NN is allocated, the yellow LED will remain flashing. It can
be cancelled back to SLiM by holding in the button again for about 8 seconds.

For compatibility and uniformity, it is recommended that the above sequence and LED colours are
adhered to in any module design.

7.2.3 Switching back from FLiM to SLiM .

Once in FLiIM mode, if the pushbutton is held down again (about 8 seconds), the yellow LED goes out
and the module reverts to SLiM mode with the green LED on. If it is a producer or combi node, then the
NN should revert to that set by the DIP switches. If it is a consumer, then it reverts to having a zero NN.
The node should issue a NNREL opcode for the NN being released.

7.2.4 Changing NN and/or forcing CAN ID self enumeration.

If the pushbutton of a FLiM module is pressed briefly, the module re-enters setup mode as described
from section 7.2.1.

The RQNN sent from the module as it enters setup mode will include the current NN. The PC
configuration tool may prompt the user as to whether they wish to keep this NN or allocate a new one. It
can then send the same or a new NN using the SNN opcode.

If the pushbutton is pressed briefly again without a new NN being received, the module continues in
FLiM with the previously allocated NN. This enables you to check the NN of any module.

With the present implementation, a module will retain its CAN_ID even if allocated a new NN. To force
self-enumeration of the CAN_ID, the module must first be returned to SLiM mode. It is proposed that
pressing the PB briefly will also force a self enumeration without reverting to SLiM. New MERG module
code will incorporate this. There is also an OpCode to force self enumeration should this be required.

7.2.5 Teaching Node Variables. (NVs)

Node variables are parameters (in bytes) which affect the operation of the whole node or module. They
are taught by reference to the node number (NN) and the node variable index (NV#). The number of NVs
depends on the type and function of the module.

Each NV has a single teaching command. (NVSET). The node variable index starts at a value of 1. The
command format is:

<0x96><NNhi><NNlo><NV#><NVval>
where NVval is the actual byte value of the node variable.

For those used to DCC decoder programming, you can regard the Node Number as the loco address,
the NV# as the CV number and the NVval as the actual CV.

Repeat the command for each node variable required. Node variables are stored in non-volatile memory
and the time required to write to memory may exceed the CAN frame repetition rate. As a result,
successive writes may get missed so the CBUS module will confirm a write operation with a WRACK
(write acknowledge).

<0x59><NNhi><NNlo>

If you try to write more NVs than the module can accept, instead of a WRACK you will get an error
message. (CMDERR)

Page 13 Developer’'s Guide Rev 6b



<0x6F><NN hi><NN lo><Error number>
The error number for too many NVs is 10 (decimal) or ‘Invalid Node Variable Index’. The error messages
are in 12.2 of the specification section. Note that the number of allowed NVs is contained in the module
parameter set (Parameter 6) so any software tool should be aware of the NV# limit.
7.2.6 Readback of node variables.
You can retrieve stored node variables form a module with NVRD
<0x71><NN hi><NN lo><NV#>
NV# is again the index of the NV required. The response is NVANS.

<0x97><NN hi><NN lo><NV# ><NV val>

Repeat for all NV index values.

7.2.7 Teaching events and event variables.

Unlike Node Variables, the teaching of events and their associated variables is performed in two stages.
This is determined by the 8 byte limit of a CAN frame (and the defined size of a CBUS message). As
previously described, the CBUS event comprises 4 bytes. However, in FLIM mode, the module also
needs to be told what it is to do with an event. With SLiM setup, this is set by using the switches when
teaching. For FLiM teaching, the information must accompany the events.

As with the node variables, each taught event can have a number of Event Variables (EVs) as
determined by the functionality of the module. Due to the message size limitation, these are taught one
at a time using an indexing scheme. The event teaching process is as follows:

a. Put the module into its ‘learn’ mode. (NNLRN)
<0x53><NNhi><NNlo>
b. Send the events to be taught (EVLRN)

<0xD2><NN hi><NN lo><EN hi><EN lo> <EV#><EV val>

Where the <NN hi><NN lo><EN hi><EN lo> are the node and event values of the event to be
taught. For teaching device numbers using device addressing, NN hi and NN lo must be set to 00 00.
EN hi and EN lo now become the DN hi and DN lo. e.g.

<0xD2><00 >< 00><DN hi><DN lo> <EV#><EV val>

As for the NVs, the EVs are indexed starting at 1. Different modules will have different
numbers of EVs and their EV values will also be module specific.

A separate EVLRN message must be sent for each EV.
No assumption should be made as to how events are retained in non-volatile storage. Events may not

be stored sequentially in the module if a hash table is used. The number of possible stored events and
the number of EVs per event can be read from the parameter list. See section 12.2. If an attempt is

Page 14 Developer’'s Guide Rev 6b



made to store too many events or the EV# is out of range, an error message (CMDERR) will be
returned. See section 12.2.

As event storage will be to non-volatile memory, each EVLRN message is acknowledged with a WRACK
— or CMDERR. Do not attempt ot write the next EVLRN until the WRACK has been received from the
previous one.
C. Take module out of learn mode. (NNULN)

<0x54><NN hi><NN lo>
The above teaching process can be performed at any time while the bus is in use by other activities. You
can change individual event variables at any time by repeating the learn sequence using the same first 4
bytes to define the event.
To remove an event while in learn mode, use EVULN.
<0x95><NN hi><NN lo><EN hi><EN lo>
Important. Only one node must be in learn mode at any one time or more than one node will be taught
the same events.
Other facilities for module configuration.
Apart from the basic teaching process above, there a other OPCs related to module configuration.

7.2.8 Query all nodes.

It is possible to rebuild a FLiM configuration from scratch. The first step is to query all the nodes to find
out what is connected. This is done using QNN:

<0x0D>
Every connected node, that has a node number, should respond with a PNN message:
<0xB6><<NN Hi><NN Lo><Manuf Id><Module Id><Flags>

The manufacturer id, module id and flag byte are as defined for the module parameters, see section
12.2.

This will result in a stream of PNN (0xB6) packets, one from each node. The requesting node must be
designed so that it can cope with this stream without packet loss.

Once a list of all nodes has been built, further information can be obtained from the nodes by reading
Node Variables, Events and Event variables as described in sections 7.2.6 and 7.2.9.

The rebuilt configuration will include SLiM producers but will not include any SLiIM consumers, or events
they have been taught, because without a node number a SLiM consumer cannot respond to the QNN
message.

Of course, whilst this rebuilt configuration contains all the information about node settings, events taught
and event settings, it cannot contain any information about how the various events are used or what
physical devices (turnouts, signals etc) they refer to, as this will be specific to the layout to which the
modules are connected. It is possible to recover a module name if it had one.

Page 15 Developer’'s Guide Rev 6b



Note also that the QNN query and PNN response was introduced to the specification at version 7h.
Modules that contain older firmware written to an earlier version of the specification may not respond to
the QNN message.

7.2.9 Readback of events and EVs.

You can read back all stored events in a module using the NERD or NENRD OPCs. For NERD use:

<0x57><NN hi><NN lo>

This will cause the module to send a sequence of messages giving all the stored events and their index
number in the events table. (ENRSP)

<O0xF2><NN hi><NN l0><EN3><EN2><EN1><ENO><EN#>
Here, the NN hi and NNlo are the node number of the module being polled. ENO to EN3 are the four
bytes of the stored event (EN2 and EN3 will be zero for short events). EN# is the index of the event in
the module’s event table. This can be used subsequently for reference to individual events.
Note that the value of EN# for any particular event should not be retained by a software tool. The value
of EN# for an event can change if a new event is added or an existing event is deleted.
If you know this index and want to retrieve an event from a module individually, you can use NENRD.
<0x72><NN hi><NN lo><EN#>
This will produce the ENRSP message but only for the one event.
If you know the event index, it is possible to change the whole event rather than just the event variables
as with EVLRN. This uses the EVLRNI OpCode (Event learn by index). Use the same sequence as for
EVLRN but with the following format:
<O0xF5><NN hi><NN lo><EN hi><EN lo><EN#><EV#><EV val>

Now the event location is pointed to by EN#. This could be useful for changing the device numbers
which had been previously allocated without deleting the event first.

Other useful OpCodes for configuration purposes are:

NNCLR Clear all events from a node. Must be in learn mode first for safety reasons.
NNEVN Allows a read of available event space left. Answer is EVLNF

RQEVN Read number of stored events. Answer is NUMEV

8. Layout control and associated commands.

This section may be of assistance for those developing layout control software.

CBUS is essentially an 'event driven’ scheme. A producer such as the software creates a CBUS
message or event which is recognised and acted upon by one or more consumers. This applies equally
to either the long or short schemes. In the latter case, the consumer would be a numbered device.
Equally, layout based devices create an event when a change occurs. These are flagged by their

Page 16 Developer’'s Guide Rev 6b



OpCodes as either ON or OFF events. All events are essentially ‘broadcast’ by nature and it is up to the
user software or module firmware to determine whether to act on that event or not.

As previously described, a CBUS event comprises an OpCode and 4 subsequent bytes. The OpCode
determines the nature of the event. However, CBUS allows for extensions of this rule.

8.1 Events with added data.
The basic CBUS message has a limit of 7 bytes plus the OpCode. While still maintaining the original ON
| OFF style, different OpCodes define events with one, two or three added bytes which can contain data.
These bytes may carry digitised 'analog’ data such as track current, turntable position, speed settings
etc. so a consumer may use the data to determine why the event has been created, e.g track current is
too high. When sent by the producer, the data may be used to set speeds, positions, lamp colour /
brightness or anything else in the consumers.
8.2 Polling of producers.
Although event driven, CBUS has OpCodes that allow a device such as a computer to determine the
state of any layout device or input on request without a change having taken place. The format is the
same as for an ON or OFF event but uses a different OpCode. The response to such a 'request’ also
has the same format but different OpCodes so a response can be differentiated from an actual change
event. This process applies to both short and long events and these again are distinguished by different
OpCodes.
8.3 Data only events.
There may be situations where more data bytes are required than the allowed extra three (see events
with added data). If only the node number or device number is utilised, (two bytes), then 5 data bytes
can be included in a message. This particular situation arose with the use of RFID tags for locos and
rolling stock. CBUS has four OpCodes to define these transactions.
a. Accessory node data event (ACDAT)

<0xF6><NN hi><NN lo><datal><data2><data3><data4><data5>

Produced by a node when the data has changed or at any preset interval.
b. Accessory node data Response (ARDAT)

<O0xF7><NN hi><NN lo><datal><data2><data3><data4><data5>

Produced by a node in response to a request RQDAT.
C. Device data event (short mode) (DDES)

<O0xFA><DN hi><DN lo><datal><data2><data3><data4><data5>

Produced by a device when the data has changed or at any preset interval.
d. Device data response (short mode) (DDRS)

<0xFB><DN hi><DN lo><datal><data2><data3><data4><data5>

Produced by a device in response to a request RQDDS.
The use of the short mode (device addressing) here allows for multiple RFID readers to be connected to

a single node. Each reader has its own device number. A computer can read these data sets at any time
using the request OpCode.

Page 17 Developer’'s Guide Rev 6b



8.4 Layout control with ‘short’ events.

As described in section 4.2.1, there may be situations where it is more convenient to describe layout
devices using a specified number (Device Number) for each layout ‘device’ which may be a single
element such as a turnout or signal or a complete route.

Here, the consumers and producers can be allocated their own DNs. A module with multiple inputs or
outputs will have a DN per input or output and hence can be addressed directly. If several consumers
have outputs allocated the same DN, then all will respond to a command to that DN as would be
required for route setting etc.

8.4.1 Teaching Device Numbers.

Device humbers are taught in the same way as for ‘long’ events (see section 7.2.7). However, the first
two bytes of the ‘event’ must be set to 00, 00. The second two bytes are the DN.

As the allocation of a DN is a user choice, it is preferable to use a ‘configuration utility’ for teaching short
events. Now the upper two bytes can be set to 00, 00 and the DN chosen appropriately. Given the DN
range of 0 to 65535, it may be of value to segment the DN ranges either on the basis of device type or
on a layout module basis.

Producer modules can also have their inputs or switches allocated specific DNs in the same way. Hence
an event generated by one of these modules can be identified with a specific input or switch. This will be
required if a PC is interposed between the producers and consumers (the conventional method for PC
based layout control) so the PC will know where the event came from. If no PC is used, the switch, on a
control panel say, will be given the same DN as the device it is actuating (e.g. a turnout) giving a ‘one to
one’ control or if several consumer devices have that number, the switch can set a route.

9. The DCC system.

9.1 CABs

9.1.1 Operating sequence
9.1.2 Allocation of a ‘session’
9.1.3 Setting speed step range
9.1.4 The ‘keepalive’

9.1.5 Speed and direction
9.1.6 Function control

9.1.7 Emergency stop

9.2 Consisting

9.3 CV programming

9.3.1 Service mode

9.4 Direct DCC packets

9.5 Layout 